What do humans perceive in asset returns?*

Jasmina Hasanhodzic

Andrew W. Lo

Emanuele Viola
August 5, 2018

Abstract

In this article, the authors run experiments to test if and how human subjects can differentiate time series of actual asset returns from time series that are generated "synthetically" via various processes, including AR1. In contrast with previous anecdotal evidence, they find that subjects can distinguish between the two. These results show that temporal charts of asset prices convey to investors information that cannot be reproduced by summary statistics. They also provide a first refutation based on human perception of a strong form of the efficient-market hypothesis. Their experiments are implemented via an online video game (http://arora.ccs.neu.edu). The authors also link the subjects' performance to statistical properties of the data, and investigate whether subjects improve their performance while playing.

[^0]One of the most important and complex decisions individuals face is how to save and invest. Choices they make affect not only their own quality of life, but may have an impact on the economy by creating dependencies on government-sponsored benefits. However, it is well noted that when it comes to investing, individuals are not well positioned to make sound decisions. Several reasons have been proposed in the literature, including overload of information about investment products to choose from, marketing strategies designed to mislead, behavioral biases, and financial illiteracy; see, for example, Bazerman (2001), Bodie (2007), Choi, Laibson, and Madrian (2010), and the references therein. The problem of inadequate individual investment decisions is especially acute in the case of retirement savings, where the recent shift from defined benefit pension plans to privatized 401(k) plans has forced individuals to, in effect, manage their own money. As a result, much debate among policymakers and academics has taken place about improving the quality and presentation of data available to investors. For example, Bazerman (2001) and Kozup et al. (2008) call for research on investors' perceptions of investment products and ways of making the information about those products easy to access and comprehend.

An example of a work in this direction is Hung, Heinberg, and Yoong (2010), who evaluate versions of the Department of Labor's proposed Model Comparative Chart, which provides a standard simplified disclosure format for investment information. They conduct an online experiment where subjects are asked to allocate $\$ 10,000$ among different funds based on funds' performance disclosure. In one version of the disclosure, past returns are presented as a numerical table. In another version, in addition to the numerical table, the disclosure shows a graphical representation of returns over a 10-year period, as a bar chart. Perhaps surprisingly, the authors find that the two disclosures have a statistically significant effect on the retirement investment allocation, although the effect may not be practically significant in terms of investment outcomes.

Together with the prevalence of temporal charts of asset returns in financial media such as Yahoo! Finance and their widespread use by both casual and professional investors, the above brings to the forefront a fundamental question: Just what information can human beings extract from charts of financial returns? This question has several ramifications. For example: Are there any patterns in financial asset returns that humans can actually extract by looking at such charts? Is
seeing a chart more informative than just having a few parameters like, say, average and variance? Could Yahoo! and numerous other websites that display charts save space by getting rid of them altogether, with no harm to investors? In Hung, Heinberg, and Yoong's (2010) experiment, is the mere presence of some chart biasing the subjects, or are subjects actually gathering information from the contents of the chart?

In this paper we report the results of several experiments designed to test if and how human subjects can differentiate time series of actual asset returns from time series that are generated "synthetically" via various processes. Specifically, we consider time series obtained by permuting at random the samples of actual returns, as well as those arising from first-order autoregressive (AR1) models. Our experiments are implemented via an online video game (http://arora.ccs.neu.edu).

The main finding of this paper is that humans can distinguish actual time series from synthetic ones. The results related to random permutations indicate that subjects perceive the temporal order of financial data. The results related to AR1 indicate that subjects are employing more than just first-order autocovariance to differentiate the two time series. We also link the subjects' performance to other statistical properties of the data, and investigate whether subjects improve their performance while playing. For some contests, our results indicate that subjects do improve.

Our findings are in contrast with previous anecdotal evidence. Specifically, it was argued that humans cannot tell price charts from "random," such as charts generated by a random walk. For example, in an experiment (Malkiel 1973, p. 143) students were asked to generate returns (i.e., price differences) by tossing fair coins, and it was argued that those yielded observations that were indistinguishable from market returns to human subjects observing corresponding price charts. For similar arguments in the finance literature see, for example, Roberts (1959), Kroll, Levy, and Rapoport (1988), DeBondt (1993), Wärneryd (2001), and Swedroe (2005). Such anecdotal evidence has also been collected in the computer science literature. For example, Keogh and Kasetty (2003) asked 12 professors at UCR's Anderson Graduate School of Management to look at six time series and determine which three series are random walk, and which three are real S\&P500 stocks. They find that "the accuracy of the humans was 55.6%, which does not differ significantly
from random guessing."
Our results are also of interest in light of the Efficient Market Hypothesis, according to which "prices fully reflect all available information" and hence must be unforecastable; see, for example, Samuelson (1965), Fama (1965a), Fama (1965b), and Fama (1970). A strong form of this hypothesis presumes asset returns to be independent and identically distributed, see, e.g., Fama (1970). In this case, it would be impossible to distinguish actual asset returns from a random permutation of them. But, again, we show that humans can do that.

Note that works such as Lo and MacKinlay $(1988,1999)$ and Lo, Mamayski, and Wang (2000), provide compelling evidence that markets are not efficient, i.e. price data does possess statistical properties that noticeably deviate from random models. In fact, they show that autocorrelation is such a property. However, we point out that the data analysis in all of these works is computer, not human-based. Consequently, the works leave open the question of whether markets look efficient to human beings. Our work appears to be the first to provide such an answer.

We note that the idea of testing the ability of human subjects to distinguish random vs. real data using graphical representations is not new. Indeed, this has been studied in depth in the Information Visualization literature; see for example the works by Heer, Kong, and Agrawala (2009), and Wickham, Cook, Hofmann, and Buja (2010), and the references therein. However, we are unaware of any previous work where this idea has been used in a financial setting.

Similarly, we do not view the video game we developed as a main contribution of this paper. This game displays data in a fashion similar to commonly used trading platforms; and similar tools are for example reviewed in the Information Visualization papers just cited. Instead, implementing the experiment as a video game is intended to make the process fun and engaging for the subjects, so that they do not get tired, bored, or frustrated in a way that might affect their behavior. Moreover, the game allows the subjects to make their choices quickly, allowing us to get a large amount of data efficiently, with as little cost to subjects as possible.

Experimental Design

We develop a simple web-based video-game available at

Exhibit 1: Reindeer (real data in top panel).

Exhibit 2: Bear (real data in bottom panel).

Exhibit 3: Wrong choice in Beaver contest.

Exhibit 4: Correct choice in Elk contest.
http://arora.ccs.neu.edu. In this game, subjects are shown two dynamic price series (i.e., moving charts) side by side-both of which display price graphs evolving in real time (a new price is realized roughly each second)—but only one of which is a "replay" of actual historical price series. The other series is constructed via a synthetic process. See Exhibits 1 and 2, which are snapshots from our game. Subjects are asked to press a button indicating their selection of the actual price series, and are informed immediately whether they were correct or incorrect, see Exhibits 3 and 4, after which the next pair of price series begins being displayed. Note that the charts are moving, so at any point in time there is a certain number of observations present on the screen for each time series, which is a subset of the total number of observations subjects see on a moving chart before having to make a guess (these parameters are reported for each data set later in the paper). Subjects do not have to wait until the entire moving chart is completed being displayed before making their choice, but can guess at any time prior to its completion (an omnipresent counter informs them of the time left). They have a counter telling them how many seconds they have remaining before the moving chart is done. The game is fast-paced: subjects can observe the charts for 10 to 25 seconds (depending on the data set) before having to make a guess.

For the actual time series we used eight data sets consisting of returns of commonly traded financial assets. These data sets were arbitrarily named after animals, so that users had no knowledge of the specific financial assets used in the experiment. Exhibit 5 summarizes the data used. It also reports how many charts were shown to each subject, how many data points constitute a chart, and, since charts are moving, how many points of the chart fit onto the screen at any given time. Subjects were given 11 seconds to guess in the Bull contest, 15 in Bear, Elk, and Raindeer, 20 in Lynx and Mandrill, 22 in Seal, and 24 in Beaver. The Dow Jones Corporate Bond Price Index was obtained from the Global Financial Database, while all other data series were obtained from Bloomberg. Several statistics of the data sets are presented later. We use them to shed light on the difference in performance between the random permutation and AR1 experiments.

Datasets				
Contest	Data	Points on Screen	Charts per Subject	Points per Chart
Mandrill	S\&PGSa Corn Index Spot daily data Jun 1982 - Oct 2009	38	50	125
Bear	Nasdaq Composite Index tick data (about 1 sec.) May - Jl 2009	250	37	400
Lynx	Canada/U.S Foreign Exchange Rate daily data Aug 1978-Apr 2009	90	35	190
Reindeer	Gold Spot Price tick data ($1-60$ sec.) Jun - Oct 2009	350	40	500
Beaver	Dow Jones Industrial Average daily data Sep 1926 - May 2009	300	36	500
Bull	Russell 2000 Index tick data (about 10sec.) May - Dec 2009	110	31	153
Seal	Dow Jones Corporate Bond Price Index daily data Jan 1941 - Apr 2009	250	39	400

Exhibit 5: The correspondence between contest names and data sets and parameters used in the presentation of data to the subjects during the game.

Subjects were recruited via Amazon Mechanical Turk. ${ }^{1}$ After registration, ${ }^{2}$ a subject can participate in eight different contests, each consisting of the same game applied to different data sets. Participating in a contest consists of the following task. The subject is shown two dynamic price charts on a computer screen, one above the other (Exhibits 1 and 2). Each graph evolves through time-similar to those appearing in computer trading platforms-plotting the price at that point in time as well as the trailing prices over a fixed time window over the most recent past. Of the two moving charts, only one corresponds to the sequence of market prices from the actual data set; we call this graph the "real" chart. The other corresponds to a "synthetic" sequence of prices. We call this graph the "synthetic chart". The computer chooses at random which of the two graphs is placed at the top or the bottom.

The subject is asked to decide which of the two moving charts is the real one by clicking on it. The game registers the subject's choice, and informs the subject immediately whether his/her guess is correct or incorrect, see Exhibits 3 and 4. For each data set, the user is shown approximately 35 pairs of moving charts and asked to make as many choices. The subject is also free to refrain from choosing. This happened rarely, and to err on the conservative side, we recorded the absence of a guess as an incorrect choice for that trial. To provide the participants with some incentive for making correct choices, we paid each participant as follows. We counted the number v of correct guesses made by the participant minus the number of wrong guesses. If v was larger than 0 then we paid v dimes.

To evaluate the robustness of our experimental design, we varied various parameters of the experiment across data sets, as indicated in Exhibit 5. In addition, we presented subjects with data charts in two different ways. For half of the data sets corresponding to transaction-by-transaction (or "tick") data, each subject was shown a fresh set of charts, based on a sequence of returns disjoint from the sequences shown to any other subjects. For the other half of the data, corresponding to

[^1]daily data, the charts shown to each subject were based on the same sequence of returns. ${ }^{3}$
Finally, for each data set, before entering the contest subjects were required to train on a disjoint set of data.

Synthetic processes and results

In this section we describe the various synthetic processes we considered and the corresponding results. In each case we begin with a time series of actual historical prices $\left\{p_{0}, p_{1}, p_{2}, \ldots, p_{T}\right\}$ and generate from it a synthetic series $\left\{p_{0}^{*}, p_{1}^{*}, p_{2}^{*}, \ldots, p_{T}^{*}\right\}$. When displayed during the game, each series is scaled so that its maximum and minimum lie on the borders of the window on the computer screen.

Random permutation

Here we want to test the null hypothesis H that human subjects cannot distinguish between actual time series and a time series that is obtained by permuting at random the entries of the actual one. Details follow.

We begin with a time series of actual historical prices $\left\{p_{0}, p_{1}, p_{2}, \ldots, p_{T}\right\}$ and compute the logarithmic returns $\left\{r_{t}\right\}$,

$$
\begin{equation*}
r_{t} \equiv \log \left(p_{t}\right)-\log \left(p_{t-1}\right) \tag{1}
\end{equation*}
$$

From this, we construct a randomly generated price series $\left\{p_{0}^{*}, p_{1}^{*}, \ldots, p_{T}^{*}\right\}$ by cumulating randomly permuted returns:

$$
\begin{aligned}
& p_{t+1}^{*} \equiv p_{t}^{*} \cdot e^{r_{\pi(t+1)}} \quad, \quad p_{0}^{*} \equiv 1 \\
& \pi(k):\{1, \ldots, T\} \rightarrow\{1, \ldots, T\}
\end{aligned}
$$

where $\pi(k)$ is a uniform permutation of the set of time indexes $\{1, \ldots, T\}$. A random permutation

[^2]of the actual returns does not alter the marginal distribution of the returns, but it does destroy the time-series structure of the original series, including any temporal patterns contained in the data. Therefore, the randomly permuted returns will have the same mean, standard deviation, and moments of higher order as the actual return series, but will not contain any time-series patterns that may be used for prediction. This construction will allow us to test specifically for the ability of human subjects to detect temporal dependencies in financial data.

The results are reported in Exhibit 6. In particular, for each contest we report the p-value of the two-sided t-test of the null hypothesis, according to which the average across subjects of the number of their correct guesses equals the total number of guesses in the contest divided by $2{ }^{4} \mathrm{We}$ also report the correct guesses per subject as percentage of total guesses. The table shows that the null hypothesis is refuted for all eight data sets: p-value is always less than 1%.

A variant

To evaluate the robustness of the results we also considered the following variant of the process, were returns are simply obtained via price differences:

$$
r_{t} \equiv p_{t}-p_{t-1} .
$$

From this, we construct a randomly generated price series $\left\{p_{0}^{*}, p_{1}^{*}, \ldots, p_{T}^{*}\right\}$ by cumulating randomly permuted returns:

$$
\begin{aligned}
& p_{t}^{*} \equiv \sum_{k=1}^{t} r_{\pi(k)}, p_{0}^{*} \equiv p_{0}, \\
& \pi(k):\{1, \ldots, T\} \rightarrow\{1, \ldots, T\} .
\end{aligned}
$$

For this variant we also changed the recruitment and incentive mechanisms. To recruit subjects, an announcement was emailed to Northeastern computer science students, MIT Sloan MBA students in the Fall section of 15.970, members of the American Association of Individual Investors

[^3]Results for Distinguishing Price Charts from Their Permutation

Contest	Subjects	p-Value	Correct Guesses per Subject As Percentage of Total Guesses
Mandrill	56	0.00972	507048545848644634543840504850605650546462 404864466248466856525662565238545836586440 6246545668465250546660425660
Bear	55	0.00000	788186737665769278435776767889469586545776 465973818665867384468462784681865968658981 92814392976551494397515768
Lynx	56	0.00045	315760496057605754496043495466514960494946 514969545160495463575454466051576954295466 6054635766375754665149464957
Reindeer	56	0.00000	536375939545658563857838636568354853704563 557378607078486070937050704563736563608075 5360607343436343589570536055
Beaver	58	0.00013	585864537247675342444261426456533661426764 535644567253725072505653645647504756754450 75787553586144505056693958396942
Bull	57	0.00000	81978497100818410065619010090841001001007439 55974894100295297615510097971001001008197100 9071100100949710068100973552396190742910097
日k	58	0.00000	857368706868608348907883805385459540358330 8093487580704573608365838388458395100937578 90957883808060535055937368358583
Seal	55	0.00000	777285548264648585626479388592595462773844 858564878746747254798582699090856782748579 79648585695151568564597290

Exhibit 6: Results for distinguishing price charts from their permutation. For each contest, the pvalue is for a two-sided t-test of the null hypothesis that the average across subjects of the number of their correct guesses equals the total number of guesses in the contest divided by 2 .
mailing list, Market Technicians Association mailing list, the MTA Educational Foundation mailing list, and the staff and Twitter followers of TraderPsyches. As an incentive, we offered a \$100 Amazon gift certificate to the top scorer in each contest.

Results for Distinguishing Price Charts from Their Permutation - Variant

Contest	Subjects	p-Value	Correct Guesses per Subject As Percentage of Total Guesses
Mandrill	17	0.05770	3842464648505052545858606064646670
Bear	29	0.00000	1007078100921689869578100869784819510081 7073547373927889895157
Lynx	26	0.00156	4343464646464949515154545757576060636363 636363636671
Reindeer	22	0.00000	10040689575738068789578637568755363737885 5338
Beaver	23	0.00332	3336425050535353535656586464646464646767 698183
Bull	32	0.00000	1009494100811009797849497901001009497100 1001008497971009497100941001001009745
日k	25	0.00000	10045788890885575939083100839090881009095 9088931008553
Seal	38	0.00000	4144464954595959626264646467676969727474 747777797979828282828587909092100

Exhibit 7: Results for distinguishing price charts from their permutation-variant. For each contest, the p-value is for the two-sided t-test of the null hypothesis that the average across subjects of the number of their correct guesses equals the total number of guesses in the contest divided by 2.

Results for this variant are reported in Exhibit 7. The p-value is less than 6% for all but one data set. We attribute the slightly less decisive outcome for this variant to the smaller number of subjects.

Abstract

AR1

Here we want to test the null hypothesis H that human subjects cannot distinguish between an actual time series S and a time series that is generated by an AR1 process that is calibrated to

match mean, variance, and (first-order) autocovariance of S. Details follow. We refer to Section 3.4 of Hamilton (1994) for background on AR1 processes.

Again we begin with a time series of actual historical prices $\left\{p_{0}, p_{1}, p_{2}, \ldots, p_{T}\right\}$ and compute the logarithmic returns $\left\{r_{t}\right\}$,

$$
\begin{equation*}
r_{t} \equiv \log \left(p_{t}\right)-\log \left(p_{t-1}\right) . \tag{2}
\end{equation*}
$$

Then we compute the sample mean μ, variance v, and (first-order) autocovariance α of the series r. This defines an AR1 process

$$
y_{t}:=c+\phi \cdot y_{t-1}+\epsilon_{t},
$$

where ϵ_{t} are i.i.d. normal distributions with mean 0 and variance σ^{2}, as follows:

$$
\begin{aligned}
\phi & =\alpha / v, \\
c & =\mu(1-\phi), \text { and } \\
\sigma^{2} & =v\left(1-\phi^{2}\right) .
\end{aligned}
$$

The starting point y_{0} of the AR1 process is taken to be r_{h} for an index h chosen uniformly at random.

And finally we set

$$
p_{t+1}^{*} \equiv p_{t}^{*} \cdot e^{y_{t+1}} \quad, \quad p_{0}^{*} \equiv 1 .
$$

The results are reported in Exhibit 8. We obtain a p-value less than 0.505% for five of our eight data sets, and higher for the other three.

Comparison of random permutation and AR1 results

In this section we investigate whether subjects do better when presented with the permutation process than with an AR1 process. As a first step, in Exhibit 9 we present the results of one-sided, independent samples t-test for success rate decline between the random permutation and AR1 experiments, reported in Exhibits 6 and 8, respectively. For each contest, the null hypothesis is that

Results for Distinguishing Price Charts from AR1

Contest	Subjects	p-Value	Correct Guesses per Subject As Percentage of Total Guesses
Mandrill	36	0.55792	524640444854583658644856604436504256505852 565050466044564854485850445454
Bear	40	0.00000	10059869749621005427735489739249785978898995 7062927397954386955410076579289769297100
Lynx	38	0.14392	546051433146405746635754515740605766605749 6637433757375154696063515451514654
Reindeer	39	0.00033	584890586355435853637045404348454543456848 459058705543589043707883737055807065
Beaver	37	0.10729	505839724764696958475656444256566144535844 47476953535058284453333358566761
Bull	37	0.00000	776565777755815842778197818755619797874890 74618758907155776555717187848187
日k	36	0.00505	535563454063484363484863454848684863886045 586370486558556038505548537558
Seal	38	0.00000	675159675969644659678569795656496982597962 3382447974627767496256796977745979

Exhibit 8: Results for distinguishing price charts from AR1. For each contest, the p-value is for the two-sided t -test of the null hypothesis that the average across subjects of the number of their correct guesses equals the total number of guesses in the contest divided by 2 .

One-Sded t-Test for Success Rate Dedine from Permutation to AR1	
Contest	p-Value
Mandrill	0.067
Bear	0.949
Lynx	0.156
Reindeer	0.084
Beaver	0.096
Bull	0.014
日k	0.000
Seal	0.009

Exhibit 9: One-sided, independent samples t-test for success rate decline between the random permutation and AR1 experiments. For each contest, the null hypothesis is that the average, across subjects, of their success rates is equal for the two experiments. The alternative hypothesis is that the average success rate in the AR1 experiment is lower than the average success rate in the random permutation experiment. The success rate of a particular subject is defined as the number of their correct guesses divided by the number of charts in the contest.
the average, across subjects, of their success rates is equal for the two experiments. The alternative hypothesis is that the average success rate in the AR1 experiment is lower than the average success rate in the random permutation experiment. The success rate of a particular subject is defined as the number of their correct guesses divided by the number of charts in the contest. For 6 out of 8 data sets the null hypothesis is rejected at least at the 10% level.

To gain insight into differences in performance between the two experiments, in Exhibit 10 we present the first five autocorrelations and the Ljung-Box Q statistic, computed using 20 lagged terms of the actual and synthetic data. The Q statistic tests the null hypothesis that autocorrelations up to lag 20 equal zero, i.e., it tests for "overall" randomness in returns. The first thing to notice is that for the actual data (the top panel of Exhibit 10) we reject the null hypothesis of overall randomness in each of the 8 data sets with high confidence (p -values of the Q statistic are 0.000). Under random permutation, we fail to reject the null (the middle panel of Exhibit 10). The fact that overall randomness of the shuffled data is so different from that of the actual data helps explain why subjects performed so well under the permutation experiment.

Autocorrelations and the Ljung－Box Q Statistic for the Actual and Simulated Data

Contest	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	Ljung－Box Q_{20}	p －value $\left(Q_{20}\right)$
	Actual Data						
Mandrill	8.0	1.7	0.4	1.6	－3．0	99	0.000
Bear	11.2	6.5	4.4	4.1	3.8	18845	0.000
Lynx	2.9	－0．3	1.4	1.1	－3．2	66	0.000
Reindeer	－34．8	11.0	－4．0	4.0	－2．4	137260	0.000
Beaver	1.4	－3．0	1.6	1.3	1.1	99	0.000
日k	31.0	20.2	15.9	13.0	10.6	52615	0.000
Bull	－12．3	1.2	1.2	0.3	0.1	15227	0.000
Seal	8.4	6.2	7.4	4.9	5.5	710	0.000
	Random Permutation						
Mandrill	－2．1	3.1	－2．5	－1．1	－0．5	25	0.189
Bear	－0．2	0.0	－0．1	0.0	0.0	18	0.611
Lynx	0.7	0.9	－0．4	－0．7	0.5	15	0.753
Reindeer	0.1	0.0	0.0	0.1	0.0	10	0.966
Beaver	－0．4	1.7	0.1	－0．8	1.1	20	0.474
日k	0.1	0.1	0.3	0.0	0.2	16	0.687
Bull	0.1	0.0	0.0	－0．1	－0．1	13	0.868
Seal	0.6	0.8	1.5	0.2	0.1	21	0.420
	AR1						
Mandrill	10.1	1.1	0.7	－1．9	－0．8	80	0.000
Bear	11.2	1.5	0.1	0.0	－0．1	9354	0.000
Lynx	4.3	－1．0	0.6	0.3	－0．9	39	0.006
Reindeer	－35．0	12.2	－4．2	1.4	－0．5	138450	0.000
Beaver	0.9	－0．4	0.1	－0．1	－0．6	29	0.092
日k	30.8	9.2	2.6	0.9	0.3	24274	0.000
Bull	－12．4	1.7	－0．4	0.0	0.0	15425	0.000
Seal	8.2	0.4	－0．5	－1．6	0.2	137	0.000

Exhibit 10：Autocorrelations and the Ljung－Box Q statistic，computed using 20 lagged terms．The Q statistic tests the null hypothesis that autocorrelations up to lag 20 equal zero，i．e．that returns are random and independent．The corresponding p－values are also presented．These statistics are reported for the actual data，as well as for synthetic processes constructed using random permuta－ tion or an AR1 process calibrated to the data．The synthetic processes are constructed based on the entire data sample．

On the other hand, for the AR1 process, we do reject the null hypothesis of overall randomness (the bottom panel of Exhibit 10). In fact, for 6 out of the 8 contests, the p-values of the Q statistic are the same as those of the actual data up to three decimal places. For the remaining 2 contests we reject the null at the 1% level in one case and at the 10% level in the other case. This similarity in overall randomness between the actual and AR1 data helps explain why the subjects had a somewhat harder time in the AR1 test. Interestingly, this similarity appears especially pronounced precisely in the three contests where subjects have the hardest time distinguishing the AR1 process from the actual data: Mandrill, Lynx, and Beaver.

Learning

As our game provides feedback, we investigate whether subjects improve their performance while playing. We do so by comparing the subjects' performance in the first and the last part of each contest. Specifically, for each contest, we consider the subset consisting of the first $\alpha=1 / 5$ fraction of guesses, and that consisting of the last α fraction. ${ }^{5}$ For each subset, we add up the number of correct guesses across subjects and divide that sum by the total number of guesses in the subset times the number of subjects. We call this the fraction of correct guesses made by the combined pool of subjects. We refer to this fraction in the first (last) part of each contest as "Correct First" ("Correct Last").

Exhibit 11 reports the results for the permutation and AR1 processes. For the permutation process (presented in the left-hand-side panel of the table), in all but one contest the average number of correct guesses increases. To check whether this increase is statistically significant across contests, we conduct one-sided Wilcoxon signed rank test on the results presented in the table. In particular, we test the null hypothesis that "Correct First" minus "Correct Last" comes from a distribution with zero median against the alternative that the median of the "Correct First" column is less than the median of the "Correct Last" column. ${ }^{6}$ Exhibit 11 shows that the increase in correct guesses is significant at the 10% level.

The right-hand-side panel of Exhibit 11 reports the results for the AR1 process. Across all

[^4]Performance Improvement in the Combined Pool of Subject

Contest	Random Permutation			AR1		
	Num. Guesses	Correct First	Correct Last	Num. Guesses	Correct First	Correct Last
Mandrill	557	0.506	0.589	359	0.496	0.482
Bear	384	0.693	0.734	280	0.739	0.832
Lynx	391	0.573	0.588	265	0.525	0.536
Reindeer	445	0.620	0.656	312	0.510	0.635
Beaver	406	0.559	0.594	258	0.543	0.500
Bull	342	0.798	0.825	221	0.674	0.819
日k	461	0.690	0.755	287	0.544	0.568
Seal	385	0.787	0.592	266	0.677	0.519
	p -Values of One-Sded Signed Rank Test					
	Random Permutation			AR1		
All contests	0.098			0.320		

Exhibit 11: Performance improvement with the permutation and AR1 processes. For each contest, the column "Correct First" reports the fraction of correct guesses made by the combined pool of subjects in the first one-fifth of guesses. The column "Correct Last" reports the corresponding value for the last one-fifth of guesses. The column "Num. Guesses" is the denominator in the calculation of these fractions of correct guesses. For each synthetic process, the table also reports the p-values of one-sided Wilcoxon signed rank test, which tests the null hypothesis that "Correct First" minus "Correct Last" comes from a distribution with zero median against the alternative hypothesis that the median of the "Correct First" column is less than the median of the "Correct Last" column.

\left.	Performance Improvement Subject By	
Subject		$\right]$

Exhibit 12: For each contest, for each subject in that contest, we take the fraction of correct guesses in the first one-fifth of guesses and the fraction of correct guesses in the last one-fifth of guesses. For each contest, we then report the p-value of the one-sided t-test of the null hypothesis that subject by subject "Correct First" minus "Correct Last" comes from a distribution with zero mean. The alternative hypothesis is that the mean of the "Correct First" column is less than the mean of the "Correct Last" column.
contests we cannot reject the null hypothesis that the median success rate is the same in the first and the last fraction of guesses. However, in some cases, like Reindeer or Bull, the difference in the average success rates seems significant. Indeed, Exhibit 12 shows that if we conduct a significance test contest by contest (rather than across contests as above in Exhibit 11), we find evidence of learning in three out of eight contests under either random permutation or AR1. Here for each subject in a given contest, we take the fraction of correct guesses in the first one-fifth of guesses and the fraction of correct guesses in the last one-fifth of guesses. For each contest, we then report the p-value of the one-sided t-test of the null hypothesis that subject by subject "Correct First" minus "Correct Last" comes from a distribution with zero mean, against the alternative that the mean of the subject by subject "Correct First" data is less than that of the corresponding "Correct Last" data. The table shows that for the permutation process learning is statistically significant for Mandrill, Bear, and Elk at least at the 10% level, while for the AR1 process, it is significant for Bear, Reindeer, and Bull at least at the 5\% level.

Recall also that in our experiment subjects are required to practice before entering a contest. This makes the results in this section less prone to be influenced by extraneous factors such as becoming comfortable with the interface.

Conclusion

A natural question that arises is how were the subjects able to perform so well in seven out of eight data sets? Casual inspection of Exhibits 1-4 shows that distinguishing real data from synthetic data is challenging; for some data sets the real chart tends to be smoother, as in Exhibit 2, while for other data sets the opposite is true, the real chart tends to be spikier, as in Exhibit 4. What complicates the matter further is that, as is evident from the data, the "smoothness" of actual data varies with time. Still, feedback from just a few trials seems sufficient for the user to extract characteristics of the data to be used in classifying charts in the near future. The importance of feedback is supported by the information about winning strategies that some of the subjects volunteered to share with us (anonymously). For example, a subject wrote:

Admittedly, when first viewing the two data sets in the practice mode, it is impossible to tell which one is real, and which one is random, however, there is a pattern that quickly emerges and then the game becomes simple and the human eye can easily pick out the real array (often in under 1 second of time).

For some contests, our results suggest that indeed subjects improve while playing.
An interesting direction is to compare humans' performance against the performance of computers, following a vast literature, cf. Lawrence et al. (2006). In our experiment, the human eye-as opposed to a computer algorithm—may have an advantage. It is well known that computers still struggle with many image-recognition and classification tasks that are trivial for humans. The same may be the case for distinguishing asset returns from synthetic processes.

Given the recent regulatory push towards ensuring that "consumers have the information they need to choose the consumer financial products and services that are best for them, ${ }^{, 7}$ the study of optimal ways to present financial data to investors is of current interest. Our paper is a contribution to the growing body of literature on the usefulness of temporal charts in evaluation of financial asset performance.

References

M. H. Bazerman. Consumer research for consumers. Journal of Consumer Research, 27(4):499504, 2001.
Z. Bodie. The challenge of investor education. In Z. Bodie, D. McLeavey, and L. B. Siegel, editors, The Future of Life-Cycle Saving and Investing, pages 169-171. Research Foundation of the CFA Institute, February 2008.
J. Choi, D. Laibson, and B. Madrian. $\$ 100$ bills on the sidewalk: Suboptimal saving in 401(k) plans. Review of Economics and Statistics, 2010.

[^5]W. P. M. De Bondt. Betting on trends: Intuitive forecasts of financial risk and return. International Journal of Forecasting, 9(3):355-371, 1993.
E. Fama. The behavior of stock market prices. Journal of Business, 38(1):34-105, 1965.
E. Fama. Random walks in stock market prices. Financial Analysts Journal, 21:55-59, 1965.
E. Fama. Efficient capital markets: A review of theory and empirical work. Journal of Finance, 25:383-417, 1970.
J. Heer, N. Kong, and M. Agrawala. Sizing the horizon: the effects of chart size and layering on the graphical perception of time series visualizations. In 27th International Conference on Human Factors in Computing Systems (CHI), pages 1303-1312, 2009.
A. A. Hung, A. Heinberg, and J. K. Yoong. Do risk disclosures affect investment choice? Technical report, RAND Labor and Population, September 2010.
E. J. Keogh and S. Kasetty. On the need for time series data mining benchmarks: A survey and empirical demonstration. Data Mining and Knowledge Discovery, 7(4):349-371, 2003.
J. Kozup, E. Howlett, and M. Pagano. The effects of summary information on consumer perceptions of mutual fund characteristics. Journal of Consumer Affairs, 42(1):37-59, Spring 2008.
Y. Kroll, H. Levy, and A. Rapoport. Experimental tests of the mean-variance model for portfolio selection. Organizational Behavior and Human Decision Processes, 42(3):388-410, 1988.
M. Lawrence, P. Goodwin, M. OConnor, and D. Önkal. Judgmental forecasting: A Review of Progress over the Last 25 Years. International Journal of Forecasting, 22:493-518, 2006.
A. Lo, H. Mamaysky, and J. Wang. Foundations of technical analysis: Computational algorithms, statistical inference, and empirical implementation. Journal of Finance, LV(4):1705-1765, August 2000.
A. W. Lo and A. C. MacKinlay. Stock market prices do not follow random walks: Evidence from a simple specification test. Review of Financial Studies, 1(1):41-66, 1988.
A. W. Lo and A. C. MacKinlay. A Non-Random Walk Down Wall Street. Princeton University Press, Princeton, NJ, 1999.
B. G. Malkiel. A Random Walk Down Wall Street. W. W. Norton \& Company, 1973.
H. V. Roberts. Stock-market 'patterns' and financial analysis: Methodological suggestions. The Journal of Finance, 14(1):1-10, 1959.
P. Samuelson. Proof that properly anticipated prices fluctuate randomly. Industrial Management Review, 6:41-49, 1965.
L. E. Swedroe. The Only Guide to a Winning Investment Strategy You'll Ever Need. St. Martin's Press, 2005.
A. M. Turing. Computing machinery and intelligence. Mind, 59:433-460, 1950.
K. E. Wärneryd. Stock-market psychology: How people value and trade stocks. Edward Elgar, 2001.
H. Wickham, D. Cook, H. Hofmann, and A. Buja. Graphical inference for infovis. IEEE Trans. Vis. Comput. Graph., 16(6):973-979, 2010.

[^0]: *We would like to thank Zvi Bodie for pointing out to us Hung, Heinberg, and Yoong (2010), Michael Coen for helpful discussions on a preliminary version of this work, especially on p-values, and Jason Chen, François Gourio, and Jawwad Noor for helpful feedback and discussions. We are also grateful to Hamid Jahanjou for his help with Amazon Mechanical Turk.

 Jasmina Hasanhodzic is assistant professor of finance at Babson College in Wellesley, MA. jhasanhodzic1@babson.edu
 Andrew W. Lo is Charles E. and Susan T. Harris professor at the MIT Sloan School of Management and principal investigator at the MIT Computer Science and Artificial Intelligence Laboratory in Cambridge, MA. alo@mit.edu Emanuele Viola is associate professor of computer science at Northeastern University in Boston, MA. He was partially supported by a grant from MIT and NSF grants CCF-0845003 and CCF-1319206. viola@ccs.neu.edu

[^1]: ${ }^{1}$ The advertisement read: "The game you are about to play is part of a research project which studies how humans see random data. The game has been designed to be fun to play: we are going to show you pairs of charts; in each pair, one chart is based on real data (such as price fluctuations) and one is randomly generated. You are required to indicate which one you think is real by clicking on it."
 ${ }^{2}$ In the first iterations, we had subjects fill a short demographic questionnaire which included a question about financial literacy. We found no correlation between their answers and their performance in our experiment, so we discontinued the questionnaire.

[^2]: ${ }^{3}$ However, the data was shifted by a random amount for security reasons, i.e., to avoid the possibility that two subjects could coordinate their guesses, for example by simultaneously playing the same charts on two nearby machines.

[^3]: ${ }^{4}$ We use the same test for other synthetic processes considered below.

[^4]: ${ }^{5}$ Non-integer numbers are rounded down to the nearest integer.
 ${ }^{6}$ We use the signed rank test rather than the t-test because of the small sample size.

[^5]: ${ }^{7}$ The Consumer Financial Protection Bureau, http://www. consumerfinance.gov/protecting-you/.

